
TiddlyWeb: HTTP for Tiddlers
Chris Dent

Peermore Limited
Newbury, United Kingdom

cdent@peermore.com

ABSTRACT
TiddlyWeb was created as a web-based storage system for
TiddlyWiki, a single-user all-in-one-HTML-file wiki.
TiddlyWeb answers the question: Using what we know about
the open web, and especially HTTP, how would a system that
supports multiple users and sharing of TiddlyWiki content be
designed and built? The answer leads to a resource oriented
design. TiddlyWeb builds on learning from previous systems. Its
design and implementation illuminates useful patterns in service
development and highlights common wisdom in systems design.
Though sometimes described as a RESTful store for tiddlers, it
is perhaps more appropriate to call it an HTTP store. Rather than
going into detail on the architecture of TiddlyWeb, this paper
reflects on the lessons learned during development.

Keywords
REST, HTTP.

1. INTRODUCTION
The Representational State Transfer (REST) architectural style
was derived from, was established in concert with, and has
driven the advancement of the World Wide Web and HTTP [2].
As such, to ask if a service presented over HTTP is RESTful or
not is to ask the wrong question; a more useful question would
be to ask to what extent a service avails itself of the
opportunities and advantages provided by the principles and
constraints of the architectural style. TiddlyWeb1 is a service
designed from the outset to follow REST, while at the same time
pragmatically bending the rules where real-world
implementations and situations present conflicting constraints.
How these constraints impacted the design and development of
TiddlyWeb confirm REST principles and provide anecdotal
evidence of useful patterns for the design and development of
other systems.

1 http://tiddlyweb.com/ Also see the Appendix.

2. TIDDLYWEB
TiddlyWeb builds on the shoulders of its predecessors. Jeremy
Ruston created TiddlyWiki in September of 2004 [6] to
automatically wikify paragraphs of content in an HTML page.
Over time it "folded in on itself to become a completely self-
contained wiki engine" [Ruston, personal communication].
TiddlyWiki makes extensive use of JavaScript and DOM
manipulation to create a wiki in a single HTML file. Individual
chunks of content are called tiddlers. Links are made between
tiddlers in the same fashion as between pages in a standard wiki.
Jeremy released TiddlyWiki as an open source project and a
thriving community has been improving and extending it with
plugins ever since. Many users have wanted to keep their
TiddlyWiki files on network-based servers. Tools called server-
sides have been created which allow parts or all of a TiddlyWiki
file to be posted to a server location. Of these, the most visible
have been ccTiddly 2 and Tiddlyspot3.

In the summer of 2006, developers at Socialtext started work on
what was called a REST API [7] for the Socialtext wiki product.
The goal was to provide a web service that allowed external
systems to get data in and out of Socialtext. Later that summer,
Socialtext started working with Jeremy Ruston and his
company, Osmosoft, to create a service called Socialtext
Unplugged which would pair TiddlyWiki with the Socialtext
API to allow offline reading, editing, and synchronization of
Socialtext workspaces. Each system helped to influence the
other. Code in TiddlyWiki that could be used to synchronize
with remote services reached a level of maturity that now allows
it to interact with several different wiki systems, and other
networked services.

Conversations ensued, over many months, exploring the idea of
creating an application, with a REST API following the
Socialtext model, that would explicitly support something that
was missing from other TiddlyWiki server-sides: effective reuse
of existing tiddlers, including other people's tiddlers, to compose
new information resources. This implied two important changes:
1) Prioritizing individual tiddlers as first class resources in the
artifact world, and 2) Creating resources that allow for the
grouping and composition of tiddlers into useful collections.

2.1 Reuse
Reuse is the overarching design goal of TiddlyWeb. Meeting
that goal drives all decisions about how to assemble
functionality and leads to a basic principle: make TiddlyWeb be
like the web.

2 http://tiddlywiki.org/wiki/CcTiddly
3 http://tiddlyspot.com/

If tiddlers4 are to be reused, they need to be on the web,
addressable by URLs. If tiddlers are to be reused by people they
need to have good names that humans like. If tiddlers are to be
shared between people there must be a mechanism to
disambiguate names and to manage access. This leads to
TiddlyWeb bags5. If tiddlers are to be composed from multiple
sources there must be a mechanism to compose and select
desired parts. This leads to TiddyWeb recipes6 and filters7. If
tiddlers are to be reused in different contexts and different
representations then some form of content-negotiation must be
provided by the service. If the service is sending and accepting
different representations of resources, then it should have a
system for serializing and de-serializing those representations
from and to a persisted form. If the service is to be flexible in
the face of unexpected uses, then the serialization system should
be extensible. If the serialization system is extensible then
developers will want to work in many contexts to create their
extensions. If there are many development contexts then the
service needs to support multiple ways of being hosted on a
network and multiple ways of persisting resources to storage.

Resolving these goals points a clear path to a design that is
resource oriented, scalable and extensible, and which
demonstrates the effectiveness of exercising HTTP. The design
points out some areas in which a pragmatic rather than dogmatic
approach wins the day. Many of the lessons are not new but a
recapitulation or repackaging of well known ideas in systems
design.

2.2 Lessons
TiddlyWeb's original description is "[a]n optionally headless,
extensible RESTful datastore for TiddlyWiki"8. Comparing the
design, development and use of TiddlyWeb with the
characteristics and constraints of the REST architectural style
shows the extent to which those constraints have been met, been
useful, or been rejected in favor of pragmatic concerns.
Knowing specific areas where compromises or adaptations have
been made may be useful for developers of other systems that
wish to take advantage of the architectural style.

2.2.1 REST
REST is derived via six architectural styles (seven if including
the null style) that form the constraints of a REST system [2].

4 In TiddlyWiki and TiddlyWeb, a tiddler is the name for a

single addressable piece of content. It might represent a single
idea, a topic summary, or a blog posting. Importantly it can
also be a chunk of Javascript code that is used to extend the
functionality of the TiddlyWiki in which it resides. TiddlyWeb
adds to this by allowing tiddlers to store any content that can
be assigned a MIME type. The content then becomes
accessible over the web with a tiddler URI.

5 http://tiddlyweb.peermore.com/wiki/recipes/docs/tiddlers/bag
6 http://tiddlyweb.peermore.com/

wiki/recipes/docs/tiddlers/recipe
7 http://tiddlyweb.peermore.com/

wiki/recipes/docs/tiddlers/filter
8 http://pypi.python.org/pypi/tiddlyweb

2.2.1.1 Client-server
The canonical UI for TiddlyWeb is in TiddlyWiki. TiddlyWeb is
the server, TiddlyWiki the client. This achieves separation of
concerns; portability and scalability; and most importantly,
independent evolution. TiddlyWeb concerns itself with storing
data while TiddlyWiki handles interaction. Different TiddlyWiki
implementations can present different user interfaces for access
to the same data. At core TiddlyWeb is very simple, because it
concerns itself with only the task of storing and providing
tiddlers. This simplicity makes it easy to scale the server.
TiddlyWeb and TiddlyWiki operate across a highly constrained
and well-defined interface (the HTTP API) meaning the server
and client can (and do) evolve separately from one another.

Of course, there is no requirement that the client be TiddlyWiki.
Anything capable of HTTP can interact with the data stored in a
TiddlyWeb server. TiddlyWeb is essentially a specialized web
server.

2.2.1.2 Stateless
As just a web server, TiddlyWeb maintains no session data for
clients. This means that a single TiddlyWeb instance can be
scaled across multiple server instances that present themselves
as one. Caching and load balancing are easy to achieve with
simple, non-invasive technologies. For most applications of
TiddyWeb thus far this has worked well. While there have been
occasional requests for server side session management tools,
these requests have usually turned out to be from people who are
not aware of alternatives.

2.2.1.3 Cache
TiddlyWeb's primary resources, tiddlers, may be effectively
cached both in browsers and intermediary cache servers using
strong ETags (note, however, the caveats about ETags below).
On a busy TiddlyWeb server, the vast majority of the content
can be serviced from cache. However, because tiddler content is
frequently edited, headers are set to require cache validation per
request.

2.2.1.4 Uniform Interface
TiddlyWeb's resources are accessible via URIs. HTTP clients
make GET, PUT and DELETE requests of the resources. This
means the clients of the information resource can be anything
that supports HTTP. The server makes no demands on, and has
no expectations of, the capabilities of the clients. TiddlyWeb
clients can use resources as they need. This model is maintained
within the TiddlyWeb code as well: between functional portions
of the code, APIs have very low surface area. Constraint at the
interface between sections means sections can improve
independently.

2.2.1.5 Layered System
TiddlyWeb's use of HTTP provides the surface layer between
clients and the resources held by the server. The client cannot
see under the covers to make special actions. This helps keep the
server simple. Internal to TiddlyWeb, the same model is
followed. Interactions between request handling code and
serialization and store handling code are constructed such that
the implementation of a serializer or storage system is invisible
to the request handling code. This means new serializers and
storage systems may be created and updated as needed.

2.2.1.6 Code-On-Demand
One of the most fascinating features of TiddlyWiki, the tool that
birthed the tiddler concept, is that tiddlers may be content or
code. As code they are plugins, modifying the functionality of
the TiddlyWiki. TiddlyWeb preserves this code-is-content,
content-is-code hybrid while adding on-demand behavior,
delivering tiddlers containing JavaScript where needed. There
are security concerns in this context: ensuring that code used is
the code desired and overcoming cross-domain browser
constraints when utilizing code from multiple servers.

These architectural styles that lead to REST result in three
categories of architectural elements.

2.2.1.7 Data Elements
TiddlyWeb presents data elements–resources–over its API, not
processors or procedures. These resources are identified by
stable identifiers. A client asks the server to GET a
representation or to PUT a representation of a resource.
Processing and rendering happens in the client. This proves
flexible, allowing for complex clients without requiring complex
handling in the server. TiddlyWeb, however, does provide a
simple mechanism for extending the representations of a
resource it is able to provide. In an ideal setting, client code
would be able to render generic representations (such as JSON
or well structured HTML) to multiple representations, but in
practice users have preferred that the server handle this.

2.2.1.8 Connectors and Components
TiddlyWeb follows the architecture of the web with regard to
the connector and component elements described by REST. It
extends the model by structuring client, server and caching
interactions within the server code using similar uniform
interface and layered system constraints. This makes TiddlyWeb
itself (the server) easier to scale, extend and test.

2.2.2 Development
TiddlyWeb has been developed iteratively with a worldwide
community of developers and users. The development process
has exposed wisdom for developing and designing networked
tools and exposes some of the expectations that users and
developers have for web services, especially ones that make
claims to being "RESTful". These discoveries are based on
anecdotes from the TiddlyWeb community, and though not
conclusive, may be useful for other systems.

2.2.2.1 Web Wisdom
TiddlyWeb's efforts to implement the REST architectural style
confirm what by now ought to be considered, due to the success
of the web, common wisdom about networked information
services. Putting information on the open web makes it
accessible by a diversity of clients for a diversity of purposes.
To maximize reference and reuse, names of resources need to be
stable [1]. TiddlyWeb tiddlers have canonical URIs that are
stable for the lifetime of each tiddler. URIs are sometimes
names. When making names that are usable by humans,
namespaces are a useful tool for avoiding collisions. In
TiddlyWeb, bags provide tiddler namespaces.

Authentication and authorization on the web are complex: hard
to get right, easier to get wrong. Efficiencies can be found by
grouping permissions into manageable chunks with few but
strict constraints. In TiddlyWeb, the bag provides the locus of

access control, not the individual tiddler. An agent can read,
write, create or delete in the context of a bag, so an access policy
can be set for a suite of tiddlers in a single step. Not only is this
cognitively easier to manage in practice it is also easier to
manage in code. Similarly the answer to authorization (can
authentic agent X access resource Y for action A?) should be
"yes" or "no", not a spectrum between "yes" and "no". If a
spectrum is required then it is likely that the resource model in
the system design is not a good match for the activities users
wish to perform.

2.2.2.2 Web in Practice
TiddlyWeb development and deployment highlights
opportunities and difficulties with the modern HTTP-based web.
Most glaring is that there are large gaps between how content-
negotiation is specified [3] and how it is implemented and used.
In practice, to get useful results, some adjustments must be
made. For people who are exploring via a browser, the simplest
way to view alternate representations is by appending a
meaningful extension or query parameter to a URI9. This
method is required because browsers provide no easy affordance
for suggesting a desired representation. URL munging is quite
useful but leads to a profusion of URLs for the same resource.

When developing, content type problems can be encountered as
well: some HTTP client libraries make it more difficult than it
should be to set an Accept header (see, for example, jQuery10).
Sending a simple, single-option Accept header, one that
explicitly states "I want representation X" is most common. That
is, using Accept as a statement of a requirement, rather than as a
suggestion to the server of possibly acceptable options. It is
useful to create and use arbitrary new content types (TiddlyWeb
uses text/x-tiddlywiki for some representations). This is most
useful in a well known or well documented system, but is
limiting in a situation where discoverability is required;
however, the above limitation in servers and clients exist. In day
to day use it appears that TiddlyWeb users do not require XML
for their structured data. They prefer JSON. Adding XML
support to TiddlyWeb's collection of default or optional
serializers would be simple, but in two years no one has asked
for it.

Authentication handling is hard to make fit well into the REST
constraints. Cookies are a commonly preferred method for
indicating authentication state, but they make responses which
otherwise might be equal, different.

Browsers have gaps in their support for HTTP that require
workarounds. Some versions of Internet Explorer are unable to
see an ETag in the response to a PUT request performed from
JavaScript, making edit handling more complex. Browsers have
varying support for Vary headers [4], limiting flexibility when
attempting to make resources cacheable. Web servers, notably
Apache make it very difficult to host resources with encoded '/'

9 Compare: http://hoster.peermore.com/

recipes/wsrest/tiddlers/Lessons.txt
and http://hoster.peermore.com/
recipes/wsrest/tiddlers/Lessons.json

10 http://api.jquery.com/jQuery.ajax/

(%2F) in URLs11. Hacks of the environment presented to server
code are required to allow '%2F'. TiddlyWeb uses one called
pathinfohack12.

ETags [3] are complex to use correctly, but extremely useful if
done right. It should be possible to Vary the cacheability of an
ETagged resource by cookie and content-type headers, but this
is not reliable because of browser difficulties. A solution used in
TiddlyWeb is to encode content-type and user variability into
ETags. This raises the complexity of server code.

"[H]ypermedia as the engine of application state" is a core
principle of REST [2, 8] that is valuable in practice but can
increase server complexity when generating representations. On
systems with a small number of resources and representations
such as TiddlyWeb, it has not been a requirement for successful
use. TiddlyWeb's core HTML representation provides linking
between resources by taking advantage of linking functionality
in HTML, however the two other default serializations (text and
JSON) do not and the linking is not missed. There is a clear cost
with this lack: clients need to be aware of more "well known"
URIs to perform actions. TiddlyWeb has fifteen. These are
learnable via the HTML representation and system
documentation. The hypermedia constraint may be more useful
in the context of discoverable APIs, less in the context of an
application and API that is being developed with open server
code and open client code. Discoverability may be useful in
systems where automatic integration is desired.

2.2.2.3 Software Design
TiddlyWeb takes advantage of software systems and designs
that can be usefully applied to other open web based services.
Most important to TiddlyWeb's development has been WSGI13,
Python's Web Service Gateway Interface. The interface
guarantees a consistent environment across a variety of web
servers, leading to easy deployment. WSGI has been so
successful in the Python community that similar projects have
started in other languages, including Rack14 for Ruby and
PSGI15 for Perl. The stable interface encourages a compositional
approach to development (mirroring the web) that eases
comprehension, testing, and extension.

Interfaces and composition are useful throughout the entire
application stack. Effective serialization from internal
representations of entities to external representations of
resources and effective storage of entities is best managed by
subsystems that operate as a black box. For this to work a server
side entity should not be responsible for its own serialization and
persistence. Instead the entity should be passed to tools which
provide the serialization and persistence functionality. Passing
between systems and layers in code mirrors RESTful design,

11 Apache can be configured to accept encode hashes with:

http://httpd.apache.org/docs/2.0/mod/core.html#allowencoded
slashes but this does not in itself solve the problem.

12 http://pypi.python.org/pypi/tiddlywebplugins.pathinfohack
13 http://www.python.org/dev/peps/pep-0333/
14 http://rack.rubyforge.org/
15 http://search.cpan.org/dist/PSGI/PSGI.pod

where a client talks to a server that might talk to another server
that might talk to another server.

2.2.2.4 Community Response
Developers and users of TiddlyWeb have expectations for how a
web API should operate and their diverse use environments
expose problems with hewing too close to the REST constraints.
Developers of client side code can be frustrated by browser and
server restrictions that prevent the use of the PUT or DELETE
HTTP methods. To work around those restrictions a methodhack
plugin16 was developed which allows tunneling of those
methods over a POST.

Developers who are accustomed to atomicity during rename
operations or when requesting or updating large numbers of
entities do not like making multiple requests. Developers often
want the server to provide actions which are by design
constrained to the client. These actions include updates to or
retrieval of just parts (rather than all) of a resource, or server
side processing of two resources (for example comparing
resources). User comments have shown there are conflicts
between learnable, grammatically sensible URIs for resources
and pretty ones that people like to share with their friends.

3. CONCLUSIONS
TiddlyWeb's name was a good choice. By mirroring the design
and constraints of the web the TiddlyWeb system achieves
excellent scalability and flexibility while still serving its core
purpose. The lessons learned from the development of
TiddlyWeb and feedback from developers and users can be
distilled into a short list of general advice:

• When modeling interaction, use the REST architectural

style not only at the level of the web, but also at the level of
software components and modules within the server. This
helps to keep concerns separate, which allows for
independent evolution and extension of components. Use
web server interfaces such as WSGI to help bring the
layered style into internal server code.

• Where necessary or useful, bend the constraints of REST to
achieve success in the face of other constraints. In
TiddlyWeb these adjustments are usually in reaction to
browsers not making things easy (e.g. content negotiation
and full use of the uniform interface) or in reaction to social
processes being more effective (at least initially) than the
constraint (e.g. hypermedia as the engine of application
state can be harder to manage than simply telling users
about the available resources).

• When writing code, separate web request handling from the
data model from the serialization model from the storage
model from the authentication model from the
authorization model. In each distinct section ask what are
the resources and what are the simple REST-like actions
that will be performed. Minimize state. Maximize
separation and layers.

• When complexity must be introduced and a choice can be
made between requiring complexity in the server versus
requiring complexity in the client, choose the client. When
the server is made more complex it is likely to require all

16 http://pypi.python.org/pypi/tiddlywebplugins.methodhack

clients to change, whereas one client changing to add
functionality has no impact on other clients.

• When developing systems that allow frequent editing of
resources, use ETags to handle edit conflicts [5]. Require
cache validation for those resources that are edited often.

If TiddlyWeb were to be developed again, some things would be
done differently:

• Instead of using extensions (e.g. *.txt) on URIs for faking

Accept headers, query parameters would be used instead.
Extensions are hard to manage when the extension is also a
part of the canonical resource name (compare
/bags/foo/tiddlers/bar.html and
/bags/foo/tiddlers/bar.html.html).

• Greater use of links between resources in representations
other than HTML. For example a JSON representation of a
bag would include a tiddlers_uri key whose value would be
a URI of the tiddler collection associated with the bag.

• All resources, not just tiddlers, would get strong ETags to
enable better caching and more robust concurrent editing.

4. ACKNOWLEDGMENTS
TiddlyWeb is an open source project built under contract with
Osmosoft17, the open source innovation arm of BT. The code is
copyright The Unamesa Assocation, "a non-profit, world-wide
association of individuals from industry, academia, and NGOs
that provides free software tools and web services for schools,
clinics, and other community organizations"18. Many thanks to
Osmosoft, BT, Unamesa and especially the growing TiddyWeb
community. Thanks to Frederik Dohr and Walt Woolfolk for
reviewing drafts of this paper.
5. REFERENCES
[1] Berners-Lee, T. 1998. Cool URIs don’t change.

http://www.w3.org/Provider/Style/URI
[2] Fielding, R. 2000. Architectural Styles and the Design of

Network-based Software Architectures.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[3] Fielding, R., Gettys, J. Mogul, J., Nielsen, H., Masinter, L.,
Leach, P., Berners-Lee, T. 1999. Hypertext Transfer
Protocol –HTTP/1.1.
http://www.w3.org/Protocols/rfc2616/rfc2616.html

17 http://osmosoft.com/
18 http://unamesa.org/

[4] Keays, R. 2007. Internet Explorer meets the Vary: header.
http://www.ilikespam.com/blog/internet-explorer-meets-
the-vary-header

[5] Nielsen, H., LaLiberte, D. 1999. Editing the Web:
Detecting the Lost Update Problem Using Unreserved
Checkout. http://www.w3.org/1999/04/Editing/

[6] Ruston, J. 2004. First version of TiddlyWiki.
http://www.tiddlywiki.com/firstversion.html

[7] Socialtext, Inc. 2006. Socialtext REST Documentation.
http://www.socialtext.net/st-rest-docs/

[8] Williams, P. 2007. Hypermedia as the Engine of
Application State.
http://barelyenough.org/blog/2007/05/hypermedia-as-the-
engine-of-application-state/

APPENDIX
TiddlyWeb is a suite of Python packages that can be installed to
create a web-service that hosts tiddlers: small, document
oriented pieces of information and code. The tiddlers are
contained in bags which provide user manageable concept and
authorization domains. Bags are listed in recipes to produce
collections of tiddlers for practical uses. TiddlyWeb has a main
website at http://tiddlyweb.com/. This paper is not meant to be
an overview of TiddyWeb, but rather the lessons learned from it.
However, a quick demonstration of TiddlyWeb functionality can
be had on a Python equipped machine by installing the Python
package called tiddlywebwiki and starting up the built in server.
One set of instructions for doing this follows. These instructions
work on a system that has pip19:

pip install -U tiddlywebwiki
twinstance tiddlyweb
cd tiddlyweb
twanager server &
In a browser go to http://0.0.0.0:8080/
and browse around.
To see a sample tiddlywiki go to
http://0.0.0.0:8080/recipes/default/tiddlers.wiki

TiddlyWeb code is hosted at
http://github.com/tiddlyweb/tiddlyweb

19 http://pypi.python.org/pypi/pip

